Learning DirectX 12 – Lesson 2 – Rendering

DirectX 12

DirectX 12 – Lesson 2

This is the second lesson in a series of lessons to teach you how to create a DirectX 12 powered application from scratch. In this lesson, vertex and index data is uploaded to the Graphics Processing Unit (GPU) for rendering. Basic vertex and pixel shaders are described and how to create a Pipeline State Object (PSO) that utilizes those shaders is also described. A root signature defines the parameters that are used by the stages of the rendering pipeline. In this lesson a simple root signature is created that defines a single constant buffer that contains the Model-View-Projection (MVP) matrix that is used to rotate a model in the scene.

Continue reading

Learning DirectX 12 – Lesson 1 – Initialize DirectX 12

DirectX 12

DirectX 12

This is the first lesson in a series of lessons to teach you how to create a DirectX 12 application from scratch. In this lesson, you will learn how to query for DirectX 12 capable display adapters that are available, create a DirectX 12 device, create a swap-chain, and you will also learn how to present the swap chain back buffer to the screen. In this lesson, you will also create a command queue and a command list and learn how to synchronize the CPU and GPU operations in order to correctly implement N-buffered rendering.

Continue reading

Volume Tiled Forward Shading

Volume Tiled Forward Shading

Volume Tiled Forward Shading

In this post, Volume Tiled Forward Shading rendering is described. Volume Tiled Forward Shading is based on Tiled and Clustered Forward Shading described by Ola Olsson et. al. [13][20]. Similar to Clustered Shading, Volume Tiled Forward Shading builds a 3D grid of volume tiles (clusters) and assigns the lights in the scene to the volumes tiles. Only the lights that are intersecting with the volume tile for the current pixel need to be considered during shading. By sorting the lights into volume tiles, the performance of the shading stage can be greatly improved. By building a Bounding Volume Hierarchy (BVH) over the lights in the scene, the performance of the light assignment to tiles phase can also be improved. The Volume Tiled Forward Shading technique combined with the BVH optimization allows for millions of light sources to be active in the scene.

Continue reading

Forward vs Deferred vs Forward+ Rendering with DirectX 11

Forward+ with HLSL

Forward+ with HLSL

In this article, I will analyze and compare three rendering algorithms:

  1. Forward Rendering
  2. Deferred Shading
  3. Forward+ (Tiled Forward Rendering)

Continue reading

Texturing and Lighting in DirectX 11

DirectX 11 Texturing and Lighting

DirectX 11 Texturing and Lighting

In this article I will discuss texture and lighting in DirectX 11 using HLSL shaders.

Continue reading

Introduction to DirectX 11

DirectX

DirectX

In this article, I will introduce the reader to DirectX 11. We will create a simple demo application that can be used to create more complex DirectX examples and demos. After reading this article, you should be able to create a DirectX application and render geometry using a simple vertex shader and pixel shader.

Continue reading

Texturing and Lighting with OpenGL and GLSL

OpenGL GLSL Texturing and Lighting

OpenGL GLSL Texturing and Lighting

In this article I will demonstrate how to apply 2D textures to your 3D models. I will also show how to define lights that are used to illuminate the objects in your scene.
I assume that the reader has a basic knowledge of C++ and how to create and compile C++ programs. If you have never created an OpenGL program, then I suggest that you read my previous article titled [Introduction to OpenGL and GLSL] before continuing with this article.

Continue reading

Understanding Quaternions

Understanding Quaternions

Understanding Quaternions

In this article I will attempt to explain the concept of Quaternions in an easy to understand way. I will explain how you might visualize a Quaternion as well as explain the different operations that can be applied to quaternions. I will also compare applications of matrices, euler angles, and quaternions and try to explain when you would want to use quaternions instead of Euler angles or matrices and when you would not.

Continue reading

Introduction to Shader Programming with Cg 3.1

NVIDIA Cg

NVIDIA Cg

In this article I will introduce the reader to shader programming using the Cg shader programming language. I will use OpenGL graphics API to communicate with the Cg shaders. This article does not explain how use OpenGL. If you require an introduction to OpenGL, you can follow my previous article titled Introduction to OpenGL.

Continue reading

Using OpenGL Vertex Buffer Objects

Vertex Buffer Object

Vertex Buffer Object

In this article, I will explain how to use the ARB_vertex_buffer_object extension to efficiently render geometry in OpenGL.
If you are not sure how to use extensions in OpenGL, you can refer to my previous article titled OpenGL Extensions. If you have never programmed an OpenGL application before, you can refer to my previous article titled Introduction to OpenGL.

Continue reading